SoftCOM '18

 tutorials

 tutorials}

Structuring Electromagnetic Problems A Clear Path in the Design of Electromagnetic Structures

Zvonimir Šipuš
University of Zagreb, Croatia

September 13-15, 2018.

Outline

- Motivation
- Canonical surfaces, EBG surfaces, soft and hard surfaces
- Applications
- Modelling of EM surfaces
- G1DMULT and G2DMULT algorithms
- Story about cloaking

Motivation

- Natural way of designing devices:

Canonical surfaces

Canonical Surface		E-field Polarization	
		VER or TM	HOR or TE
PEC		(G)	STOP
PMC		STOP	(G)
PECIPMC Strip orid	SOFTMmond	suop	SuMp
		(G)	(5) ${ }^{(0)}$
$\begin{gathered} \text { PMC-type } \\ \text { EBG } \end{gathered}$	grazing $5^{5 / 1}$	STOP	STOP
	close to normal		

2005: IEEE Transactions Special Issue with Table for comparing surfaces with respect to surface waves.

Explanations of Abbreviations

- GO surfaces: Enhances propagation of waves along surface
- STOP surface: Stops propagation of waves along surface
- PEC = Perfect Electric Conductor
- PMC = Perfect Magnetic Conductor
- AMC = Artificial Magnetic Conductor
- PBG = Photonic Bandgap Material
- EBG = Electromagnetic Bandgap Material
- EMXtals = Electromagnetic Crystals

Canonical surfaces

Two fundamental questions:

- Can we make a low-profile antennas?

- Can the EM wave propagate along the surface?

PEC: Wave propagation along surface

The PEC canonical surface

(Perfect Electric Conductor)

- Commonly used in almost all microwave and antenna analysis of metal conductors
- Characteristics:
- "Short circuits" electric current sources
- VER polarization GOes along PEC (longitudinal electric currents make waves go)
- HOR polarization STOPs along PEC (transverse electric currents stop waves)

The PMC canonical surface

(Perfect Magnetic Conductor)

- Commonly used in theoretical works
- Commonly used as symmetry plane in some codes
- Characteristics:
- Allows electric current sources at surface
- HOR polarization GOes along PMC (longitudinal magnetic currents make waves go)
- VER polarization STOPs along PMC (transverse magnetic currents stop waves)

Canonical surfaces

- Soft and hard surfaces originate from acoustics and diffraction theory
- p is acoustic pressure

Surface	Boundary condition	Wave propagating at surface
Soft	$p=0$	No
Hard	$\frac{\partial p}{\partial n}=0$	Yes

Artificially soft and hard surfaces in electromagnetics

Type of surface	Boundary condition	Wave propagation at surface
Smooth conductor	$\left.\begin{array}{l}E_{H O R}=0 \\ \partial E_{V E R} / \partial n \\ \end{array}\right)$	STOP for HOR pol. GO for VER pol.
Soft surface	$E_{H O R}=0$ $E_{V E R}=0$	STOP for HOR pol. STOP for VER pol.
Hard surface	$\partial E_{\text {HOR }} / \partial n=0$ $\partial E_{V E R} / \partial n$	GO for HOR pol. GO for VER pol.

Concept of soft and hard surfaces

- Soft surface: $E_{n}=0, E_{t}=0$
- Hard surface: $\partial E_{n} / \partial n \approx 0, \partial E_{t} / \partial n \approx 0$

In principal:

- A soft surface is a surface along which the power density of a propagating wave is zero.
(STOP surface for both polarizations)
- A hard surface is a surface along which the power density of a propagating wave has a maximum. (GO surface for both polarizations)

Soft surface: Principle of operation for

transverse corrugations (current fences)

$\mathrm{E}_{\text {VER }}$ sees AMC (transformation from short-circuit to open-circuit in grooves)
$E_{V E R}=0$
$J_{\text {long }}=0$

$\mathrm{E}_{\text {HOR }}$ sees PEC. No penetration into grooves.

$$
\begin{aligned}
& E_{\text {но尺 }}=0 \\
& J_{\text {transv }}=\text { undesturbed }
\end{aligned}
$$

Soft surface: Bandwidth is limited by surface waves

Ideally large
2:1 bandwidth

$p<\lambda / 2, \quad p / w<2$
$\lambda_{c}=$ wavelength in corrugations
$d<\lambda_{c} / 4 \quad:$ surface waves
$\lambda_{c} / 4<d<\lambda_{c} / 2$: no surface waves, i.e. STOP band
$d=\lambda_{c} / 4 \quad:$ best frequency
$d>\lambda_{c} / 2 \quad:$ surface waves

Soft surfaces

- Different forms of corrugations

- Strip-loaded corrugations

Comparison with respect to propagation of waves along the surface (surface waves)

Canonical Surface	E-field Polarization	
	VER or TM	HOR or TE
PEC	(5)	STOP
PMC	ST(P)	G(0)
PECPMC	STOP	STOP
	(G)	(5)

EBG (Electromagnetic bandgap) surface

Sievenpiper 1999:
Mushroom surface

Very easy to model as a LC resonator. \rightarrow Increasing L or C the operation frequency will decrease

EBG surface

- Dispersion diagram:

Figure 6.1.2 Surface wave band structure for a two-layer, high-impedance surface

EBG surface

- Surface wave

EBG surface - About compactness

Canonical surfaces

Characterization of EBG surfaces

- The EBG surface we can characterize in different ways:
- By dispersion diagram
- By reflection coefficient of the incoming plane wave
- By mutual coupling level between two antennas located above the EBG surface
- By radiation pattern of an antenna located above the EBG surface
- By input impedance of an antenna located above the EBG surface
- NOTE: different characterizations will determine different frequency bandwidths of interest.

Dimensions of mushroom structure

 and corrugated surface

Mushroom structure:

- patches: $2.25 \times 2.25 \mathrm{~mm}^{2}$
- diameter of vias: 0.36 mm
- lattice constant: 2.4 mm
- dielectric: $\varepsilon_{r}=2.2$,

$$
\mathrm{h}=1.6 \mathrm{~mm}
$$

Corrugated surface:

- width/period = 0.9
- dielectric: $\varepsilon_{r}=2.2$, $\mathrm{h}=4.6 \mathrm{~mm}$

Dispersion diagram of mushroom surface

Mushroom structure:

- patches: $2.25 \times 2.25 \mathrm{~mm}^{2}$
- diameter of vias: 0.36 mm
- lattice constant: 2.4 mm
- dielectric: $\varepsilon_{r}=2.2$,

$$
\mathrm{h}=1.6 \mathrm{~mm}
$$

FEM Results by D. Sievenpiper, IEEE MTT 489

Comparison of mushroom surface and corrugated surface (STOP direction)

Stop band: $11.14-15.17 \mathrm{GHz}$

Stop band: $11.0-22.0 \mathrm{GHz}$

Horizontal dipole - mutual coupling

Dipoles:

- length: 10 mm
- height: 0.5 mm
- separation: 50 mm

Stop band 11.14 - 15.57 GHz
BANDGAP

Horizontal dipole - mutual coupling

Dipoles:

- length: 10 mm
- height: 0.5 mm
- separation: 50 mm

Stop band 11.0 - 22.0 GHz

Horizontal dipole - radiation pattern

- Comparison of radiation pattern of vertical dipole over cylindrical EBG outside and inside band-gap (band-gap is $11.14-15.57 \mathrm{GHz}$)

Horizontal dipole - input impedance

Dipole:

- length: 10 mm

- height: 0.5 mm

Horizontal dipole - input impedance

- It seems that dipole over PMC is not the best solution (even though it is only theoretical solution).
- Reason - mutual coupling between the dipole and the image.
- It seems that it is better if the periodic surface has freqencydependend properties.

Reflection coefficient - normal incidence

- It seems that it is better to select surface with phase of reflection coefficient around 60 degrees than "pure" PMC surface.

Outline

- Motivation
- Canonical surfaces, EBG surfaces, soft and hard surfaces
- Applications
- Modelling of EM surfaces
- G1DMULT and G2DMULT algorithms
- Story about cloaking

Reduction of sidelobes

- Ying, Kildal (1996):

Corrugated horn

Corrugated horn

Corrugated horn

- Broadband soft corrugated primary feed
(Ying, A. Kishk and P-S. Kildal, 1995)

Corrugated horn

- Constant beamwidth over $0.9-1.7 \mathrm{GHz}$
- Aperture-field when used in Arecibo three-reflector system

Hat feed antenna (Kildal)

Around 1.000.000 hat-feed reflectors have been manufactured!

Low-profile antennas

Fig. 6.1 Dipole antennas over (a) PEC or PMC ground plane and (b) EBG ground plane.

Fig. 6.2 Return loss comparison of dipole antennas over PEC, PMC, and EBG ground planes.

Reduction of mutual coupling

Reduction of mutual coupling

Picture: Eva Rajo-Iglesias, Oscar Quevedo-Teruel

Hard waveguides

- Linearly polarized hard waveguide using dielectric-loaded walls
- Rectangular waveguide:

- Circular waveguide:

Hard waveguides

- Field distribution - rectangular waveguide:

Relative Freq $=1.00$
$k_{z 3} a=0.2014+j 0.1976$

Relative Freq $=1.05$ $k_{z 3} a=j 0.8656$

Relative Freq $=0.97$
$k_{z 3} a=0.5719$

Relative Freq $=1.10$
$k_{z 3} a=j 1.3656$

Hard waveguides

- Field distribution - circular waveguide:

Frequency $=19 \mathrm{GHz}$

TEM Frequency $=29.5 \mathbf{G H z}$

Frequency $=23 \mathbf{~ G H z}$

Frequency $=\mathbf{3 0 . 5} \mathbf{~ G H z}$

Frequency $=27 \mathbf{~ G H z}$

Frequency $=31 \mathrm{GHz}$

Hard waveguides

- Cluster feeds of a single-reflector multi-beam system.
- Uniform aperture distribution of feeds is advantageous.

Hard waveguides

- Cluster feeds of a single-reflector multi-beam system.
- Uniform aperture distribution of feeds is advantageous.

Hard struts

Picture: P.-S. Kildal

Hard struts

Hard struts

IeEe transactions on antennas and propagation, vo 44, no. 11 , november 1996
1509
Reduction of Forward Scattering from
Cylindrical Objects using Hard Surfaces
Per-Simon Kildal, Fellow, IEEE, Ahmed A. Kishk, Senior Member, IEEE, and Audun Tengs

${ }^{1150}$
Analysis of Hard Surfaces of Cylindrical Structures of Arbitrarily Shaped Cross Section Using Asymptotic Boundary Conditions

Gap waveguides - Basic idea

How to confine energy within a parallel-plate waveguide?

Gap waveguides - Motivation

- Applications above 30 GHz require new transmission lines
- Radio astronomy, Earth observations, environmental surveillance, communication, imaging (medical and security)
- Problem: Hollow waveguides become expensive
- Manufacturing in several pieces requires conducting joints
- Too small hole diameter
- Problem: Microstrip-type lines are lossy
- Ground-braking solution: Gap waveguide
- Only metal, no dielectric
- No conducting joints needed
- Low-cost milling, molding or etching

Fabrication challenges in millimeter-wave band
\checkmark Flatness is key to assure good contact between plates
\checkmark To assess good plate flatness is not an easy task

Picture: Alejandro Valero-Nogueira

Fabrication challenges in millimeter-wave band

\checkmark Many screws are needed to assure good contact, and not always successfully.

Filter

Feed network
Picture: Alejandro Valero-Nogueira

Gap waveguides - 1D periodic structures

- Classical oversized waveguide:

- Oversized waveguide with periodic texture (corrugations):

A. Valero-Nogueira, E. Alfonso, J.I. Herranz, and M. Baquero Polytechnic University of Valencia, Spain

Gap waveguides - 1D periodic structures

- Slot array with steering beam possibility:

Gap waveguides

- 1D periodic structures
- Slot array with steering beam possibility:

Gap waveguides

- Periodic structures can be divided into two types:
- 1D periodic type (e.g. corrugations)
- 2D periodic type (e.g. bed of nails).

Gap waveguides - 2D periodic structures

Parallel plate waveguide with 2D periodic structure

- groove and ridge gap waveguide - transmition line without lateral walls

Field distribution inside ridge gap-waveguide

Transverse plane field distributions (middle of gap)

Horizontal field component

Structure developed at Chalmers University of Technology

Different components realized

 using gap-waveguide technology

Structures developed at Chalmers University of Technology

Packaging: Measured S-parameters of bandpass filter

5th order filter and lids of nails

Structure developed at Chalmers University of Technology

Antennas in gap-waveguide technology

Structure developed at Chalmers University of Technology

Novel leaky wave antenna

- Antenna is based on the gap waveguide technology
- Requirements:
- Simplicity
- Only metal, no dielectric; no conducting joints needed
- Suitable for applications above 30 GHz
- Both the feeding structure and the antenna are realized in groove gap waveguide technology
- Easiness of integration with traditional waveguide technology

Novel leaky wave antenna

- Concept: both the feeding structure and the antenna are realized in groove gap waveguide technology
- Based on the leak of electromagnetic fields at one side of the groove:

:..:

- Amplitude and phase E-field distribution:

Novel leaky wave antenna

:...............................:

- Direction of the main beam:

$$
\phi=\sin ^{-1}\left(\beta / k_{0}\right)
$$

Novel leaky wave antenna

1st antenna design

Gap waveguide leaky wave antenna

- Measured radiation pattern:

Design of gap waveguide leaky wave antenna

- Design is based on tailoring complex propagation constant:

$$
\gamma=\alpha+j \beta
$$

- Phase constant:

$$
\beta \approx k_{0} \sqrt{1-\left(\lambda / 2 w_{e f f}\right)^{2}}
$$

- Attenuation (radiation) constant:

$$
\alpha \sim\left[\lambda / \sqrt{1-\left(\lambda / 2 w_{e f f}\right)^{2}}\right]^{4}
$$

Goal: to radiate 90% of the incoming power

Design of gap waveguide leaky wave antenna

- Problem of strong back-side radiation: - Solution - corrugations:

Leaky wave antenna

- measured results

Radiation pattern

- Direction of the main beam:

$$
\phi \approx \sin ^{-1}\left(\beta / k_{0}\right)
$$ Comparison of calculated

results and measurements at
10 GHz : Comparison of calculated
results and measurements at
10 GHz : Comparison of calculated
results and measurements at
10 GHz :

Design of gap-waveguide components

- Natural way of designing devices:

Outline

- Motivation
- Canonical surfaces, EBG surfaces, soft and hard surfaces
- Applications
- Modelling of EM surfaces
- G1DMULT and G2DMULT algorithms
- Story about cloaking

Theoretical background

The analysis and desing method is based on:

- Spectral-domain method (plane wave expansion in the planar case)
- Asymptotic boundary conditions for modelling the metal pattern layers
- Equivalence principle for analyzing multilayer and multiregion structures

Plane wave expansion

- In a homogeneous media, all finite sources may be represented by a set of plane waves with various propagation directions, amplitudes and phases.
- In multilayer structures, for each plane wave excited by the source we need to solve one-dimensional (1D) problem.

Plane wave representation - general multilayer problem

- In the i th layer the EM field can be represented as (sum of forward and backward propagating waves) :

$$
\mathbf{E}(x, y, z)=\mathbf{E}(z) \cdot e^{-j k_{x}^{i} x} e^{-j k_{y}^{i} y} \quad \mathbf{H}(x, y, z)=\mathbf{H}(z) \cdot e^{-j k_{x}^{i} x} e^{-j k_{y}^{i} y}
$$

- At each boundary the tangential components of the E - and H field are continuous

$$
e^{-j k_{x}^{i} x} e^{-j k_{y}^{i} y}=e^{-j k_{x}^{i+1} x} e^{-j k_{y}^{i+1} y} \quad i=1, \ldots, N_{\text {boundary }}
$$

- Consequently, variation of the total field in x - and y-directions:

$$
e^{-j k_{x} x} e^{-j k_{y} y}
$$

- For each plane wave excited by the source we need to solve one-dimensional (1D) problem.

Mathematical background of plane wave representation

- Definition of two-dimensional Fourier transformation in the directions where the structure is homogeneous:

$$
\tilde{\mathbf{E}}\left(k_{x}, k_{y}, z\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{E}(x, y, z) e^{j k_{x} x} e^{j k_{y} y} d x d y
$$

- Useful properties of Fourier transformation:

$$
\frac{\partial f}{\partial x} \Leftrightarrow-j k_{x} \tilde{f}, \quad \frac{\partial f}{\partial y} \Leftrightarrow-j k_{y} \tilde{f}, \quad f * g \Leftrightarrow \tilde{f} \cdot \tilde{g}
$$

- The form of Helmholtz differential equation $\nabla^{2} E_{z}+k^{2} E_{z}=0$ after performing the Fourier transformation:

$$
(\frac{\partial^{2}}{\partial z^{2}}+\underbrace{k^{2}-k_{x}^{2}-k_{y}^{2}}_{k_{z}^{2}}) \tilde{E}_{z}\left(k_{x}, k_{y}, z\right)=0
$$

Mathematical background of plane wave representation

- The solution of modified Helmholtz differential equation is:

$$
\begin{aligned}
& \tilde{E}_{z}\left(k_{x}, k_{y}, z\right)=C_{1} e^{-j k_{z} z}+C_{2} e^{j k_{z} z}, \\
& \tilde{H}_{z}\left(k_{x}, k_{y}, z\right)=C_{3} e^{-j k_{z} z}+C_{4} e^{j k_{z} z}, \\
& k_{z}^{2}=k^{2}-k_{x}^{2}-k_{y}^{2}
\end{aligned}
$$

- In other words, for each k_{x} and k_{y} we need to determine four constants C_{1}, C_{2}, C_{3} and C_{4}. They are determined by fulfilling the boundary conditions (1D problem).
- Another form of the solution:

$$
\begin{aligned}
& \tilde{E}_{z}\left(k_{x}, k_{y}, z\right)=D_{1} \cos \left(k_{z} z\right)+D_{2} \sin \left(k_{z} z\right) \\
& \tilde{H}_{z}\left(k_{x}, k_{y}, z\right)=D_{3} \cos \left(k_{z} z\right)+D_{4} \sin \left(k_{z} z\right)
\end{aligned}
$$

Mathematical background of plane wave representation

- Definition of inverse Fourier transformation

$$
\begin{aligned}
& \mathbf{E}(x, y, z)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \widetilde{\mathbf{E}}\left(k_{x}, k_{y}, z\right) e^{-j k_{x} x} e^{-j k_{y} y} d k_{x} d k_{y} \\
& \cong \sum_{m} \sum_{n} \frac{1}{4 \pi^{2}} \tilde{\mathbf{E}}\left(k_{x}, k_{y}, z\right) \Delta k_{x} \Delta k_{y} e^{-j k_{x} x} e^{-j k_{y} y} \\
& =\sum_{m} \sum_{n}\left[C_{i, 1} e^{-j k_{z}^{i} z}+C_{i, 2} e^{j k_{z}^{i} z}\right] e^{-j k_{x} x} e^{-j k_{y} y} \\
& k_{z}^{i}=\sqrt{k_{0}^{2} \varepsilon_{i, r}-k_{x}^{2}-k_{y}^{2}}
\end{aligned}
$$

- The inverse Fourier transformation has a form of a sum of plane waves.
- Therefore, the Fourier transformation represents the tool for obtaining the plane wave representation of the EM fields.

Plane wave expansion

- Physical picture of the spectral-domain Green's function of a point source in homogeneous space:

- Radiation of the current sheet:

Plane wave expansion

- E- and H - fields from electric current sheet

$$
\begin{aligned}
& \tilde{\mathbf{E}}= \begin{cases}-\frac{k}{2 k_{z}}\left[\eta \tilde{\mathbf{J}}-\left(\eta \tilde{\mathbf{J}} \cdot \hat{k}^{+}\right) \hat{k}^{+}\right] e^{-j \hat{k}^{+} \cdot \mathbf{r}} & z>0 \\
-\frac{k}{2 k_{z}}\left[\eta \tilde{\mathbf{J}}-\left(\eta \tilde{\mathbf{J}} \cdot \hat{k}^{-}\right) \hat{k}^{-}\right] e^{+j \hat{k} \cdot \mathbf{r}} & z<0\end{cases} \\
& \eta \tilde{\mathbf{H}}= \begin{cases}\frac{k}{2 k_{z}}\left[\eta \tilde{\mathbf{J}} \times \hat{k}^{+}\right] e^{-j j k^{+} \cdot \mathbf{r}} & z>0 \\
\frac{k}{2 k_{z}}\left[\eta \tilde{\mathbf{J}} \times \hat{k}^{-}\right] e^{+j \hat{k} \hat{k}^{-} \cdot \mathbf{r}} & z<0\end{cases}
\end{aligned}
$$

where $\hat{k}^{+}=\left(k_{x} \hat{x}+k_{y} \hat{y}+k_{z} \hat{z}\right) / k$ and $\hat{k}^{-}=\left(k_{x} \hat{x}+k_{y} \hat{y}-k_{z} \hat{z}\right) / k$.

Summary of spectral domain method

- Two-dimensional Fourier transformation is applied in directions where the structure is homogeneous.
- In these two directions each spectral component of EM field has the same variation as the source.
- Therefore, three-dimensional problem is transformed in spectrum of one-dimensional problems.

Asymptotic boundary conditions

 Ideal PEC/PMC model- If the PEC/PMC strips are parallel to the y axis, the boundary conditions at the surface are

$$
E_{y}^{a i r}=0, \quad H_{y}^{a i r}=0 .
$$

- These boundary conditions are valid in an asymptotic way, when the width and the periodicity of the strips approach zero.

Parallel plate waveguide with PEC/PMC strips

- We would like to derive the Green's function for the H -field of the parallel plate waveguide with one wall containing PEC/PMC strips.
- The source is z-directed short dipole.

Parallel plate waveguide with PEC/PMC strips

- E_{z} and H_{z} components of the EM field has the form (we need to determine constants A, B, C and D):

$$
\begin{aligned}
& \tilde{E}_{z}\left(k_{x}, k_{y}, z\right)=A \cos \left(k_{z} z\right)+B \sin \left(k_{z} z\right) \\
& \tilde{H}_{z}\left(k_{x}, k_{y}, z\right)=C \cos \left(k_{z} z\right)+D \sin \left(k_{z} z\right)
\end{aligned}
$$

- The boundary conditions:

$$
\begin{array}{lll}
\tilde{E}_{y}=0, & \tilde{H}_{y}=0 & \text { for } z=0 \\
\tilde{E}_{x}=\tilde{M}_{y}, & \tilde{E}_{y}=-\tilde{M}_{x} & \text { for } z=h
\end{array}
$$

- The replacement magnetic currents are:

$$
\tilde{M}_{x}=\frac{k_{y}}{k_{0} / \eta_{0}} \tilde{J}_{z}, \quad \tilde{M}_{y}=-\frac{k_{x}}{k_{0} / \eta_{0}} \tilde{J}_{z}
$$

Parallel plate waveguide with corrugated surface

Dispersion diagram for the parallel-plate waveguide with corrugations:

Parallel plate waveguide with corrugated surface

- H_{x} component at the point $\left(\mathrm{x}=0, \mathrm{y}=4.5 \lambda_{0}, z=h\right)$ and H_{y} component at the point ($\mathrm{x}=1.0 \lambda_{0}, \mathrm{y}=0, z=h$), as a function of frequency.

- Asymptotic boundary conditions
---- CST; calculated by Esperanza Alfonso

$$
\begin{aligned}
f_{0} & =10 \mathrm{GHz} \\
h & =3.5 \mathrm{~mm} \\
d & =4.33 \mathrm{~mm} \\
\varepsilon_{\mathrm{r}} & =4.0
\end{aligned}
$$

Parallel plate waveguide with corrugated surface

- H_{x} component of the near magnetic field in the plane defined by $z=h, y=1.0 \lambda_{0}$ and $y=5.0 \lambda_{0}$.

$f=10 \mathrm{GHz}$
$h=3.5 \mathrm{~mm}$
$d=4.33 \mathrm{~mm}$ $\varepsilon_{\mathrm{r}}=4.0$

Concept: Parallel plate waveguide with bed-of-nails

- Bed-of-nails acts like a two-dimensional corrugated surface.
- The analysis is based on spectral surface impedance.

Parallel plate waveguide with bed-of-nails

- The wire medium is modelled as a infinitely long thin metallic rods:

$$
\begin{aligned}
& \overline{\bar{\varepsilon}}=\varepsilon_{0} \varepsilon_{h}\left(\hat{x} \hat{x}+\hat{y} \hat{y}+\varepsilon_{z z}\left(\omega, k_{z}\right) \hat{z} \hat{z}\right) \\
& \varepsilon_{z z}\left(\omega, k_{z}\right)=1-\frac{k_{p}^{2}}{k_{0}^{2} \varepsilon_{h}-k_{z}^{2}} \\
& k_{p}^{2}=\frac{1}{a^{2}}\left[2 \pi /\left(\ln \left(\frac{a}{2 \pi b}\right)+0.5275\right)\right]
\end{aligned}
$$

- Three types of modes are propagating inside bed of nails:
- TE mode: $\quad \xi^{2}=k^{2} \varepsilon_{h}$
- TEM mode: $\xi^{2}=k_{z}^{2}$
- TM mode: $\xi^{2}=k_{p}^{2}+k^{2} \varepsilon_{h}$

Parallel plate waveguide with bed-of-nails

- Three types of modes are propagating inside bed of nails:
- TE mode: $\quad \xi^{2}=k^{2} \varepsilon_{h}$
- TEM mode: $\xi^{2}=k_{z}^{2}$
- TM mode: $\quad \xi^{2}=k_{p}^{2}+k^{2} \varepsilon_{h}$
TE mode

$\xrightarrow{\theta}$

PEC
-

Parallel plate waveguide with bed-of-nails

- Spectral surface admittance is determined from the value of reflection coefficient.
- TM case:

$$
\begin{aligned}
& \tilde{Y}_{x y}^{T M}=\tilde{Y}_{y x}^{T M}=\frac{k_{0}}{\eta_{0} k_{z}} \cdot \frac{\Gamma^{T M}+1}{\Gamma^{T M}-1} \quad \Gamma_{\text {PEC }} \\
& \Gamma^{T M}=-\frac{k_{d i e} e_{p}^{2} \tan \left(k_{d i e} d\right)-\beta^{2} \gamma_{T M} \tanh \left(\gamma_{T M} d\right)+\varepsilon \gamma_{0}\left(k_{p}^{2}+\beta^{2}\right)}{k_{d i e} k_{p}^{2} \tan \left(k_{d i e} d\right)-\beta^{2} \gamma_{T M} \tanh \left(\gamma_{T M} d\right)-\varepsilon \gamma_{0}\left(k_{p}^{2}+\beta^{2}\right)} \\
& \beta^{2}=k_{x}^{2}+k_{y}^{2} \quad \gamma_{0}=\sqrt{\beta^{2}-k_{0}^{2}} \quad \gamma_{T M}=\sqrt{k_{p}^{2}+\beta^{2}-k_{d i e}^{2}} \\
& k_{p}^{2}=\frac{1}{a^{2}}\left[2 \pi /\left(\ln \left(\frac{a}{2 \pi b}\right)+0.5275\right)\right]
\end{aligned}
$$

- Details: M.G. Silveirinha et all., IEEE AP Trans., Feb. 2008.

Mushroom structure

TE case:

- The pins are "invisible" for TE waves, i.e. the reflection coefficient is equal to the reflection coefficient of grounded delectric slab.

$$
\begin{aligned}
\tilde{Y}_{x y}^{T E} & =\tilde{Y}_{y x}^{T E}=\frac{k_{z}}{\eta_{0} k_{0}} \cdot \frac{\Gamma^{T E}+1}{\Gamma^{T E}-1} \\
\Gamma^{T E} & =-\frac{\sqrt{k_{d i e}^{2}-\beta^{2}}-j \sqrt{k_{0}^{2}-\beta^{2}} \tan \left(d \sqrt{k_{d i e}^{2}-\beta^{2}}\right)}{\sqrt{k_{d i e}^{2}-\beta^{2}}+j \sqrt{k_{0}^{2}-\beta^{2}} \tan \left(d \sqrt{k_{d i e}^{2}-\beta^{2}}\right)}
\end{aligned}
$$

Parallel plate waveguide with bed-of-nails

- Surface waves are determined by the characteristic equation:

$$
\begin{aligned}
D_{s w} & =-\tilde{Y}_{y x}\left(k_{0}^{2}-k_{x}^{2}\right)-\tilde{Y}_{x y}\left(k_{0}^{2}-k_{y}^{2}\right) \\
& +j k_{0} k_{z}\left[\eta_{0} \tan \left(k_{z} h\right) \tilde{Y}_{x y} \tilde{Y}_{y x}-\frac{1}{\eta_{0}} \cot \left(k_{z} h\right)\right]
\end{aligned}
$$

Parallel plate waveguide with bed-of-nails

- Dispersion diagram for the parallel-plate waveguide with bed-of-nails and additional dielectric layer :

$h=3.5 \mathrm{~mm}$
$d=4.33 \mathrm{~mm}$
$\varepsilon_{\mathrm{r}}=4.0$

Band-gap:
$8.6-11.1 \mathrm{GHz}$

Experimental prototype

- Dispersion diagram for the prototype gap-waveguide with bed-of-nails:

w_{a}	w_{b}	P $(\mathrm{~mm})$	$a(\mathrm{~mm})$	$b(\mathrm{~mm})$	$t(\mathrm{~mm})$	$d(\mathrm{~mm})$
150	150	7.5	3.5	3.75	10	10

Parallel plate waveguide with bed-of-nails and a ridge

- Propagation constant of the fundamental mode

Parallel plate waveguide with bed-of-nails and a ridge

- Field distribution above the ridge and above the bed-of-nails:

$y=3 \lambda_{0}$
- field computed 0.5 mm above the ridge
$h=3.5 \mathrm{~mm}$
$d=4.33 \mathrm{~mm}$
$\varepsilon_{\mathrm{r}}=4.0$

Parallel plate waveguide with bed-of-nails and a ridge

Characteristic impedance of the waveguide:
$Z_{0}=2 P / I^{2}$
$P=\int_{0}^{h_{w}} \int_{-\infty}^{\infty}\left(E_{z} H_{x}^{*}-E_{x} H_{z}^{*}\right) d S=\frac{1}{2 \pi} \int_{0}^{h_{w}} \int_{-\infty}^{\infty}\left(\tilde{E}_{z} \tilde{H}_{x}^{*}-\tilde{E}_{x} \tilde{H}_{z}^{*}\right) d k_{x} d z$

Metasurfaces

- Surface-waves supporting metasurfaces:

- Metasurface transmitarrays:

Transparent and opaque metasurface boundary conditions

- Opaque (one-sided) surface impedance formulation:

- Transparent (penetrable) surface impedance formulation:

Analysis of metasurface structures

Surface impedance approach

- Parameters of each patch are determined using a code for infinite periodic structure (or by measurements).
- We assume that each patch belong to infinite periodic array enviroment (local periodicity approach) which is reasonabe assumption if the changes of the neighboring patch dimensions are not too big.
- Admittance of metasurface structure is determined from reflection coefficient Γ (calculated or measured):

Surface impedance approach

－Shapes for which asymptotic formulas can be found in literature：

For plane wave propagating along the strips （ $k_{z}=k_{0} \cos \theta$ ）：

$$
Z_{\text {suff }}^{T M}=j \frac{k_{0} \eta_{0}}{2 \pi} P \log \left(\csc \left(\frac{\pi W}{2 P}\right)\right)\left(1+\frac{k_{z}^{2}}{k_{e f f}^{2}}\right)
$$

$Y_{\text {suuf }}^{T E}=j \frac{\pi \eta_{0}}{k_{0}\left(1+\varepsilon_{r}\right)} P \log \left(\csc \left(\frac{\pi W}{2 P}\right)\right)\left(1+\frac{k_{z}^{2}}{k_{\text {etw }}^{2}}\right)$

Surface impedance approach

－Comparison of different patch／line elements：

Metasurface transmitarrays
Application: Mantle cloak

Mantle cloak:

- The optimum value of metasurface reactance is obtained by performing a parametric sweep and calculating the minimum total scattered field:

$$
Z_{\text {suff }}=-j \cdot 12.23 \Omega
$$

- The metasurface is realized using different types of periodic structures (patches, Jerusalem crosses).

Cylindrical metasurface

$\rho_{\text {PEC }}=10 \mathrm{~mm}$
$\rho_{\text {meta }}=10.5 \mathrm{~mm}$
$\varepsilon_{\mathrm{r}}=20$
$f=3 \mathrm{GHz}$

Metasurface transmitarrays
 Application: Mantle cloak

- Mantle cloak:
$Z_{\text {surf }}=-j \cdot 12.23 \Omega$
Cylindrical
metasurface

- Without cloak

- With cloak

Metasurface transmitarrays
 Application: Mantle cloak

- Mantle cloak:
$Z_{\text {surf }}=-j \cdot 12.23 \Omega$

Cylindrical
metasurface

Results - mantle cloak

- Reduction in scattered field (total scattering width):

- Dimensions are optimized to obtain the minimum total scattering width.

Results - mantle cloak

- Dependancy of surface impedance on angular mode:

- Note: the impedance profile of the patch metasurface is rather close to the optimal case

Surface-waves supporting metasurfaces

Application: Luneburg lens antenna

- Luneburg lens based antenna:
- the antenna should be designed in a way that it uses maximum lens area to achieve maximum radiating aperture:

Surface-waves supporting metasurfaces

Application: Luneburg lens antenna

- Transverse resonance method:

Dispersion relation: $Z_{S}^{T M}\left(k_{\rho}\right)=-j Z_{0}^{T M} \tan \left(k_{z} h\right)$

$$
\begin{aligned}
& Z_{S}^{T M}=j X_{S} \quad Z_{0}^{T M}=\eta_{0} k_{z} / k_{0} \quad k_{z}=-j \alpha_{z} \\
& \Rightarrow \quad X_{S}=\eta_{0} \frac{\alpha_{z}}{k_{0}} \tanh \left(\alpha_{z} h\right) \quad n_{e q}=\sqrt{1+\left(\frac{\alpha_{z}}{k_{0}}\right)^{2}}
\end{aligned}
$$

Surface-waves supporting metasurfaces

Application: Luneburg lens antenna

+waxis

Outline

- Motivation
- Canonical surfaces, EBG surfaces, soft and hard surfaces
- Applications
- Modelling of EM surfaces
- G1DMULT and G2DMULT algorithms
- Story about cloaking

Calculation of Green's functions

Analytic methods:

- need less computer time
- if the topology of the problem is changed, the new Green's functions must be derived
- convenient for problems where the topology of the structure is fixed.

Numerical methods:

- more general
- need more computer time
- convenient for problems where the topology of the structure is changeable.

Algorithms for calculating Green's functions

G1DMULT algorithm:

- algorithm calculates Green's functions in spectral domain
- planar, circular-cylindrical and spherical structures
- multilayer structures

Recently, we have extended the G1DMULT algorithm to include calculation of Green's functions of structures containig metasurface layers.

Theoretical background

The G1DMULT algorithm is based on:

- Transformation of the 3D EM problem into the spectraldomain, and by this to transform the 3D problem into a spectrum of 1D problems.
- Implementation of the Love's equivalence theorem in order to analyze multilayer structures with arbitrary number of layers.

Structure of G1DMULT algorithm

(a) 3-D problem

(b) Harmonic 1-D problem

Structure of G1DMULT algorithm

- EM field inside each layer (e.g. electric field):

- Boundary conditions for each boundary:

$$
\begin{gathered}
\tilde{E}_{x, j+1}-\tilde{E}_{x, j}=0, \\
\tilde{H}_{x, j+1}-\tilde{H}_{x, j+1}-\tilde{E}_{y, j}=0, \\
\underset{\text { region }}{ }
\end{gathered}
$$

Structure of G1DMULT algorithm

- Matrix inside G1DMULT:
amplitudes of equivalent currents

EM field components
at $1^{\text {st }}$ boundary
EM field components
at $2^{\text {nd }}$ boundary

EM field components $\{$ at $\mathrm{N}^{\text {th }}$ boundary

Transparent and opaque metasurface boundary conditions

- Opaque (one-sided) surface impedance formulation:

$$
\hat{n} \times \mathbf{E}^{+}=\hat{n} \times\left[\overline{\bar{Z}}_{\text {surf }} \cdot\left(\hat{n} \times \mathbf{H}^{+}\right)\right]
$$

- Transparent (penetrable) surface impedance formulation:

Implementation of opaque boundary conditions

- Opaque impedance boundary conditions:
- Implementation of $\hat{n} \times \mathbf{E}^{+}=\hat{n} \times\left[\overline{\bar{Z}}_{\text {suff }} \cdot\left(\hat{n} \times \mathbf{H}^{+}\right)\right]$
- The system of equations inside G1DMULT (for determining the equivalent currents at the layer boundaries) is reduced.
$\tilde{\mathbf{M}}^{e q}=-\hat{n} \times\left(\overline{\bar{Z}}_{s u r f} \cdot \tilde{\mathbf{J}}^{e q}\right)$

Implementation of transparent boundary conditions

- Model of a transparent (penetrable) metasurface layer suitable for implementation into the G1DMULT algorithm - Implementation of $\hat{n} \times\left(\mathbf{H}^{+}-\mathbf{H}^{-}\right)=\overline{\bar{Y}}_{\text {suff }} \cdot \mathbf{E}_{\text {tan }}$

Algorithms for calculating Green's functions

G2DMULT algorithm:

- Algorithm calculates Green's functions in spectral domain
- Multilayer structures
- Body-of-Revolution (BoR) structures
- Cylindrical structures with general cross-section

Recently, we have also extended the G2DMULT algorithm to include calculation of Green's functions of structures containig metasurface layers.

G2DMULT algorithm - Harmonic 2D problem

- The BoR surface is defined by its generating curve rotated about the BOR axis of symmetry

$$
\begin{aligned}
& \hat{t}=\hat{\rho} \sin u+\hat{z} \cos u \\
& \hat{n}=\hat{\phi} \times \hat{t}=\hat{\rho} \cos u-\hat{z} \sin u
\end{aligned}
$$

G2DMULT algorithm - Harmonic 2D problem

- For each ϕ-harmonic we need to solve the MoM problem.
- Triangle (in t-direction) and pulse (in ϕ-direction) basis functions are used to apoproximate the surface currents:

$\mathbf{J}\left(\mathbf{r}^{\prime}\right)=\sum_{n=-\infty}^{\infty}\left\{\sum_{j=1}^{N_{T}} \alpha_{n j}^{T} \frac{T_{j}\left(t^{\prime}\right)}{\rho^{\prime}} e^{j n \phi^{\prime}} \hat{t}^{\prime}+\sum_{j=1}^{N_{P}} \alpha_{n j}^{P} \frac{P_{j}\left(t^{\prime}\right)}{\rho_{j}} e^{j n \phi^{\prime}} \hat{\phi}^{\prime}\right\}$

Outline

- Motivation
- Canonical surfaces, EBG surfaces, soft and hard surfaces
- Applications
- Modelling of EM surfaces
- G1DMULT and G2DMULT algorithms
- Story about cloaking

First experimental cloak realization

- There was no measure how good the cloak is!

Question: how to characterize a cloak?

- Scattering width $\sigma_{2 \mathrm{D}}-$ angular dependence of scattered field.
- Total scattering width σ_{T} (total SW) - ratio of the scattered power per unit length and the intensity of the incident Poynting vector.
- Total SW reduction - ratio of the total SW of the object we try to hide (PEC cylinder in our case) and the achieved total SW for the observed case with a cloak present.
- Could also be considered as "invisibility gain".

Natural way of designing devices

Natural way of designing devices

- Natural question that was posed with first cloak experiments:
- What is the best possible cloak that can be realized using metamaterial approach?
- In order to give the answer to this question we have studied cylindrical cloaks realized from anisotropic homogeneous materials
- Design of the cloaks always starts with the analysis of structures built from homogeneous material layers.
- Practical realization is actually a metamaterial realization of an ideal structure made from homogeneous layers.
- Therefore, the practical realizations have always worse properties comparing to ideal structure.

Ideal invisible cloak layout

- For the cloak design the used coordinate transformation compresses free space from the cylindrical region $0<\rho<b$ into the annular region $a<\rho^{\prime}<b$.

$$
\rho^{\prime}=a+\frac{b-a}{b} \rho, \quad \phi^{\prime}=\phi, \quad z^{\prime}=z
$$

- This transformation leads to expressions for permittivity and permeability tensors (fully anisotropic structure):

$$
\begin{aligned}
& \varepsilon_{\rho \rho}=\mu_{\rho \rho}=\frac{\rho-a}{\rho} \\
& \varepsilon_{\phi \phi}=\mu_{\phi \phi}=\frac{\rho}{\rho-a} \\
& \varepsilon_{z z}=\mu_{z z}=\left(\frac{b}{b-a}\right)^{2} \frac{\rho-a}{\rho}
\end{aligned}
$$

Reference: J. B. Pendry, D. Schurig, and D. R. Smith, Science, 2006.

TM_{z} cloak layout

- How to simplify the cloak design?
- For TM_{z} polarization and normal incidence the following products should not be modified:

$$
\varepsilon_{z z} \mu_{\rho \rho}=\left(\frac{b}{b-a}\right)^{2}\left(\frac{\rho-a}{\rho}\right)^{2} \quad \varepsilon_{z z} \mu_{\phi \phi}=\left(\frac{b}{b-a}\right)^{2}
$$

- In order to simplify metamaterial design, the following structure is proposed (with only $\mu_{\rho \rho}$ as a function of radius):

$$
\varepsilon_{z z}=\left(\frac{b}{b-a}\right)^{2} \quad \mu_{\rho \rho}=\left(\frac{\rho-a}{\rho}\right)^{2} \quad \mu_{\phi \phi}=1
$$

- Note that such a design is suitable only for TM-polarization!

Simplified invisible cloak layout

Ideal cloak	TM cloak	TE cloak
$\varepsilon_{\rho \rho}=\mu_{\rho \rho}=\frac{\rho-a}{\rho}$	$\mu_{\rho \rho}=\left(\frac{\rho-a}{\rho}\right)^{2}$	$\varepsilon_{\rho \rho}=\left(\frac{b}{b-a}\right)^{2}\left(\frac{\rho-a}{\rho}\right)^{2}$
$\varepsilon_{\phi \phi}=\mu_{\phi \phi}=\frac{\rho}{\rho-a}$	$\mu_{\phi \phi}=1$	$\varepsilon_{\phi \phi}=\left(\frac{b}{b-a}\right)^{2}$
$\varepsilon_{z z}=\mu_{z z}=\left(\frac{b}{b-a}\right)^{2} \frac{\rho-a}{\rho}$	$\varepsilon_{\rho \rho}=\left(\frac{b}{b-a}\right)^{2}$	$\mu_{z z}=1$

Drawbacks of simplified cloaks

Three large restrictions of the simplified cloaks:

- The modified condition for constitutive parameters:

$$
\begin{array}{lll}
\varepsilon_{z z} \mu_{\rho \rho}=\left(\frac{b}{b-a}\right)^{2}\left(\frac{\rho-a}{\rho}\right)^{2} & \varepsilon_{z z} \mu_{\phi \phi}=\left(\frac{b}{b-a}\right)^{2} & \left(\mathrm{TM}_{z} \text { cloak }\right) \\
\mu_{z z} \varepsilon_{\rho \rho}=\left(\frac{b}{b-a}\right)^{2}\left(\frac{\rho-a}{\rho}\right)^{2} & \mu_{z z} \varepsilon_{\phi \phi}=\left(\frac{b}{b-a}\right)^{2} & \left(\mathrm{TE}_{z} \text { cloak }\right)
\end{array}
$$

works only for

- one polarization
- normal incidence
- Reflections from the air-cloak boundary drastically reduce quality of the cloak.

Invisible cloak layout

$\longleftrightarrow 2 \mathrm{ab}$

- The needed continuous radial variation of permeability and permittivity can be successfully approximated with N layers of constant permittivity.
$a=2.71 \mathrm{~cm}$ - cloak inner radius
$b=5.89 \mathrm{~cm}$ - cloak outer radius
$f_{0}=8.5 \mathrm{GHz}$
(like in Schurig et al's cloak)

Schurig (TM_{7}) cloak - normal incidence

- PEC cylinder with a 10-layer realization of the Schurig cloak $(f=8.5 \mathrm{GHz}, \mathrm{a}=2.71 \mathrm{~cm}, \mathrm{~b}=5.89 \mathrm{~cm}$):

Schurig $\left(\mathrm{TM}_{z}\right)$ cloak - stepwise realization

- Frequency: $8,5 \mathrm{GHz}$, inner radius: $2,71 \mathrm{~cm}$, outer radius: $5,89 \mathrm{~cm}$.
- The needed continuous radial variation of permeability can be successfully approximated with about 6 layers.
- For structures with more than 5 layers the "invisibility gain" is around 3 .

Dispersion

- Extracted effective relative permeability (Hrabar et al., EuMC 2006)

From measurements:
$f_{m p} \approx 1.02 f_{0}$ $\gamma \approx 0.012 f_{0}$

Dispersion of the TM_{z} cloak

- Total SW versus frequency with dispersion included:

- The bandwidth of the TM_{z} cloak is approximately 0.24 \%.

Experimental verification of Schurig type of cloak

- Experiment at Duke University, Durham, USA
(N. Kundtz, D. Gaultney, D. R. Smith, New Journal of Physics, 2010).

Figure 1. A 3D cutaway model of the waveguide apparatus with a cloak inside.

Experimental verification of Schurig type of cloak

- 24% reduction in σ,
- Bandwidth of $230 \mathrm{MHz}(2,3$ \%)
N. Kundtz, D. Gaultney, D. R. Smith, New Journal of Physics, 2010.

Invisible cloak

- There was no measure how much is the cloak invisible!

Reference: P.-S.Kildal, A. Kishk and Z. Sipus, IEEE AP Symposium 2007.

Improvement - mantle cloak

- Mantle cloak:

The optimum value of metasurface reactance is obtained by performing a parametric sweep and calculating the minimum total scattered field.

In this example: $\underset{\text { surf }}{=-j \cdot 12.23 \Omega}$

minaxa

- Without cloak

- With cloak

Improvement - mantle cloak

- Reduction in scattered field (total scattering width):

- Dimensions are optimized to obtain the minimum total scattering width.

Hard struts and mantle cloaks

Metamaterials Meeting Industrial Products: A Successful Example in Italy

- IEEE Aps Symposium 2016 (G. Guarnieri et al.)
- The best invention award in Italy for 2015.

Fig. 3. (a) Schematic view of the designed antenna system consisting of two
monopole radiators and a cloak surrounding the LTE monopole. (b) 3D
realized gain pattern of the isolated UMTS antenna at reaized gain pattern of the isolated in the uncloaked scenario at formss (d) 3D realized gain pattern of the UMTS antenna in the cloaked scenario at fiams.

